Telegram Group & Telegram Channel
Как вы работали бы с несбалансированным набором данных?

В несбалансированном наборе данных объектов одного класса намного больше, чем объектов другого. Например, в датасете с транзакциями только 400 являются мошенническими, а 300 тысяч — нет. Из-за этого модель может хуже определять мошеннические транзакции.

Чтобы бороться с этим, используют несколько подходов:
🟡 Undersampling. Удаление некоторого количества примеров преобладающего класса.
🟡 Oversampling. Увеличение количества примеров класса, который находится в меньшинстве.
🟡 Комбинирование undersampling и oversampling.
🟡 Создание синтетических данных. Для этого можно использовать SMOTE (англ. Synthetic Minority Oversampling Technique). Алгоритм генерирует некоторое количество искусственных примеров, похожих на имеющиеся в меньшем классе.

Также можно применять взвешивание классов, при котором модель будет сильнее штрафовать за ошибки на меньшем классе. Кроме того, ансамблевые методы могут помочь уменьшить эффект несбалансированности.



tg-me.com/ds_interview_lib/99
Create:
Last Update:

Как вы работали бы с несбалансированным набором данных?

В несбалансированном наборе данных объектов одного класса намного больше, чем объектов другого. Например, в датасете с транзакциями только 400 являются мошенническими, а 300 тысяч — нет. Из-за этого модель может хуже определять мошеннические транзакции.

Чтобы бороться с этим, используют несколько подходов:
🟡 Undersampling. Удаление некоторого количества примеров преобладающего класса.
🟡 Oversampling. Увеличение количества примеров класса, который находится в меньшинстве.
🟡 Комбинирование undersampling и oversampling.
🟡 Создание синтетических данных. Для этого можно использовать SMOTE (англ. Synthetic Minority Oversampling Technique). Алгоритм генерирует некоторое количество искусственных примеров, похожих на имеющиеся в меньшем классе.

Также можно применять взвешивание классов, при котором модель будет сильнее штрафовать за ошибки на меньшем классе. Кроме того, ансамблевые методы могут помочь уменьшить эффект несбалансированности.

BY Библиотека собеса по Data Science | вопросы с собеседований




Share with your friend now:
tg-me.com/ds_interview_lib/99

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Newly uncovered hack campaign in Telegram

The campaign, which security firm Check Point has named Rampant Kitten, comprises two main components, one for Windows and the other for Android. Rampant Kitten’s objective is to steal Telegram messages, passwords, and two-factor authentication codes sent by SMS and then also take screenshots and record sounds within earshot of an infected phone, the researchers said in a post published on Friday.

Библиотека собеса по Data Science | вопросы с собеседований from ua


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA